Categories
programming-life

An old Java grimoire

I spent the last week at a rural retreat, having some much needed downtime. There’s a library here, which is mostly horror novels, along with some technical books, including Wrox’s 1999 book, Java Server Programming.

At over 1100 pages it’s a huge tome, and I miss being able to learn programming from these sorts of texts. This was the second book I read on Java after Laura Lemays Learn Java in 21 Days and it contained everything you needed to know in 1999 to become a Java backend developer – along with a lot of other arcana such as Jini and Javaspaces.

I learned enough from this book to pass an interview for a London web agency. I remember being asked what happened when a browser makes an HTTP call to a server. That’s a brilliant question, which allows a candidate to go into detail about the bits they know, although the answers will be much more complicated nowadays. I started working at the agency in 2000 just as the Internet was getting going. It was a very exciting time.

My own copy of Professional Java Server Programming was abandoned long ago – living in shared houses over the years meant limited space to keep books. But finding it here was like encountering an old friend.

Categories
GenAI

GenAI is already useful for historians

I’m still hearing people saying that GenAI is empty hype, comparing it to blockchain and NFTs. The worst dismissals claim that these tools have no real use. While there is a lot of hype around GenAI, there are people using them for real work, including for code generation and interpretation.

An interesting article in the Verge, How AI can make history, looks at how LLMs can investigate historical archives, through Mark Humphries’ research into the diaries of fur trappers. He used LLMs to summarise these archives and to draw out references to topics far more powerfully than a keyword search ever could.

The tool still missed some things, but it performed better than the average graduate student Humphries would normally hire to do this sort of work. And faster. And much, much cheaper. Last November, after OpenAI dropped prices for API calls, he did some rough math. What he would pay a grad student around $16,000 to do over the course of an entire summer, GPT-4 could do for about $70 in around an hour. 

Yes, big companies are overselling GenAI. But, when you strip away the hype, these tools are still incredibly powerful, and people are finding uses for them.